Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.272
Filtrar
1.
Expert Rev Anticancer Ther ; : 1-10, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38623811

RESUMO

BACKGROUND: The effect of age, sex, and eastern cooperative oncology group performance status (ECOG PS) on the efficacy and safety of immune checkpoint inhibitor (ICI) therapy among hepatocellular carcinoma (HCC) patients remains elusive. Thus, a meta-analysis was conducted to evaluate whether such effects exist. RESEARCH DESIGN AND METHODS: Eligible studies in PubMed, Embase, and Cochrane Library databases were retrieved. RESULTS: One-hundred-and-eleven studies involving 14,768 HCC patients were included. The findings indicated that the ECOG PS didn't have a significant effect on the ORR and PFS in ICI-treated HCC patients (higher ECOG PS vs. lower ECOG PS: ORR: OR = 0.78, 95%CI = 0.55-1.10; PFS: HR = 1.15, 95%CI = 0.97-1.35), while those patients with a higher ECOG PS may have a worse OS (HR = 1.52, 95% CI = 1.26-1.84). There is no significant evidence of the effect of age (older vs. younger) or sex (males vs. females) on the efficacy of ICI therapy in HCC. CONCLUSION: ICI therapy in HCC should not be restricted strictly to certain patients in age or sex categories, while HCC patients with higher ECOG PS may require closer medication or follow-up strategy during ICI therapy. PROSPERO REGISTRATION: CRD42024518407.

2.
Environ Sci Technol ; 58(15): 6605-6615, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38566483

RESUMO

Microbial nitrogen metabolism is a complicated and key process in mediating environmental pollution and greenhouse gas emissions in rivers. However, the interactive drivers of microbial nitrogen metabolism in rivers have not been identified. Here, we analyze the microbial nitrogen metabolism patterns in 105 rivers in China driven by 26 environmental and socioeconomic factors using an interpretable causal machine learning (ICML) framework. ICML better recognizes the complex relationships between factors and microbial nitrogen metabolism than traditional linear regression models. Furthermore, tipping points and concentration windows were proposed to precisely regulate microbial nitrogen metabolism. For example, concentrations of dissolved organic carbon (DOC) below tipping points of 6.2 and 4.2 mg/L easily reduce bacterial denitrification and nitrification, respectively. The concentration windows for NO3--N (15.9-18.0 mg/L) and DOC (9.1-10.8 mg/L) enabled the highest abundance of denitrifying bacteria on a national scale. The integration of ICML models and field data clarifies the important drivers of microbial nitrogen metabolism, supporting the precise regulation of nitrogen pollution and river ecological management.


Assuntos
Desnitrificação , Nitrogênio , Nitrogênio/análise , Rios , Nitrificação , China , Bactérias
3.
Sci Rep ; 14(1): 8607, 2024 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-38615120

RESUMO

Stellera chamaejasme (S. chamaejasme) is an important medicinal plant with heat-clearing, detoxifying, swelling and anti-inflammatory effects. At the same time, it is also one of the iconic plants of natural grassland degradation in northwest China, playing a key role in the invasion process. Plant endophytes live in healthy plant tissues and can synthesize substances needed for plant growth, induce disease resistance in host plants, and enhance plant resistance to environmental stress. Therefore, studying the root endophytes of S. chamaejasme is of great significance for mining beneficial microbial resources and biological prevention and control of S. chamaejasme. This study used Illumina MiSeq high-throughput sequencing technology to analyze the composition and diversity of endophytes in the roots of S. chamaejasme in different alpine grasslands (BGC, NMC and XGYZ) in Tibet. Research results show that the main phylum of endophytic fungi in the roots of S. chamaejasme in different regions is Ascomycota, and the main phyla of endophytic bacteria are Actinobacteria, Proteobacteria and Firmicutes (Bacteroidota). Overall, the endophyte diversity of the NMC samples was significantly higher than that of the other two sample sites. Principal coordinate analysis (PCoA) and permutational multivariate analysis of variance (PERMANOVA) results showed significant differences in the composition of endophytic bacterial and fungal communities among BGC, NMC and XGYZ samples. Co-occurrence network analysis of endophytes showed that there were positive correlations between fungi and some negative correlations between bacteria, and the co-occurrence network of bacteria was more complex than that of fungi. In short, this study provides a vital reference for further exploring and utilizing the endophyte resources of S. chamaejasme and an in-depth understanding of the ecological functions of S. chamaejasme endophytes.


Assuntos
Actinobacteria , Thymelaeaceae , Endófitos/genética , Sequenciamento de Nucleotídeos em Larga Escala , Thymelaeaceae/genética , Análise de Variância
4.
J Agric Food Chem ; 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38607803

RESUMO

The occurrence of maize ear rot caused by Fusarium verticillioides (F. verticillioides) poses a threat to the yield and quality of maize. Mefentrifluconazole enantiomers appear to have strong stereoselective activity against F. verticillioides and cause differences in fumonisin production. We evaluated the stereoselective activity of mefentrifluconazole enantiomers by determining inhibition of the strain, hyphae, and conidia. Strain inhibition by R-(-)-mefentrifluconazole was 241 times higher than S-(+)-mefentrifluconazole and 376 times higher in conidia inhibition. For the mechanism of the enantioselective bioactivity, R-mefentrifluconazole had stronger binding to proteins than S-(+)-mefentrifluconazole. Under several concentration conditions, the fumonisin concentration was 1.3-24.9-fold higher in the R-(-)-mefentrifluconazole treatment than in the S-(+)-mefentrifluconazole treatment. The R-enantiomer stimulated fumonisin despite a higher bioactivity. As the incubation time increased, the stimulation of the enantiomers on fumonisin production decreased. R-(-)-Mefentrifluconazole stimulated higher fumonisin production in F. verticillioides at 25 °C compared to 30 °C. This study established a foundation for the development of high-efficiency and low-risk pesticides.

5.
World J Diabetes ; 15(3): 552-564, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38591089

RESUMO

BACKGROUND: The association of single nucleotide polymorphism of KCNQ1 gene rs2237895 with type 2 diabetes mellitus (T2DM) is currently controversial. It is unknown whether this association can be gene realized across different populations. AIM: To determine the association of KCNQ1 rs2237895 with T2DM and provide reliable evidence for genetic susceptibility to T2DM. METHODS: We searched PubMed, Embase, Web of Science, Cochrane Library, Medline, Baidu Academic, China National Knowledge Infrastructure, China Biomedical Liter-ature Database, and Wanfang to investigate the association between KCNQ1 gene rs2237895 and the risk of T2DM up to January 12, 2022. Review Manager 5.4 was used to analyze the association of the KCNQ1 gene rs2237895 polymorphism with T2DM and to evaluate the publication bias of the selected literature. RESULTS: Twelve case-control studies (including 11273 cases and 11654 controls) met our inclusion criteria. In the full population, allelic model [odds ratio (OR): 1.19; 95% confidence interval (95%CI): 1.09-1.29; P < 0.0001], recessive model (OR: 1.20; 95%CI: 1.11-1.29; P < 0.0001), dominant model (OR: 1.27. 95%CI: 1.14-1.42; P < 0.0001), and codominant model (OR: 1.36; 95%CI: 1.15-1.60; P = 0.0003) (OR: 1.22; 95%CI: 1.10-1.36; P = 0.0002) indicated that the KCNQ1 gene rs2237895 polymorphism was significantly correlated with susceptibility to T2DM. In stratified analysis, this association was confirmed in Asian populations: allelic model (OR: 1.25; 95%CI: 1.13-1.37; P < 0.0001), recessive model (OR: 1.29; 95%CI: 1.11-1.49; P = 0.0007), dominant model (OR: 1.35; 95%CI: 1.20-1.52; P < 0.0001), codominant model (OR: 1.49; 95%CI: 1.22-1.81; P < 0.0001) (OR: 1.26; 95%CI: 1.16-1.36; P < 0.0001). In non-Asian populations, this association was not significant: Allelic model (OR: 1.06, 95%CI: 0.98-1.14; P = 0.12), recessive model (OR: 1.04; 95%CI: 0.75-1.42; P = 0.83), dominant model (OR: 1.06; 95%CI: 0.98-1.15; P = 0.15), codominant model (OR: 1.08; 95%CI: 0.82-1.42; P = 0.60. OR: 1.15; 95%CI: 0.95-1.39; P = 0.14). CONCLUSION: KCNQ1 gene rs2237895 was significantly associated with susceptibility to T2DM in an Asian population. Carriers of the C allele had a higher risk of T2DM. This association was not significant in non-Asian populations.

6.
Int J Surg ; 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38518083

RESUMO

The landscape of current tumor treatment has been revolutionized by the advent of immunotherapy based on PD-1/PD-L1 inhibitors. Leveraging its capacity to mobilize systemic anti-tumor immunity, which is primarily mediated by T cells, there is growing exploration and expansion of its potential value in various stages of clinical tumor treatment. Neoadjuvant immunotherapy induces a robust immune response against tumors prior to surgery, effectively facilitating tumor volume reduction, early eradication or suppression of tumor cell activity, and control of potential metastatic spread, to improve curative surgical resection rates and prevent tumor recurrence. This review delineates the theoretical basis of neoadjuvant immunotherapy from preclinical research evidence, discusses specific challenges in clinical application, and provides a comprehensive overview of clinical research progress in neoadjuvant immunotherapy for gastrointestinal tumors. These findings suggest that neoadjuvant immunotherapy has the potential to ameliorate immunosuppressive states and enhance cytotoxic T cell function while preserving lymphatic drainage in the preoperative period. However, further investigations are needed on specific treatment regimens, suitable patient populations, and measurable endpoints. Despite numerous studies demonstrating the promising efficacy and manageable adverse events of neoadjuvant immunotherapy in gastrointestinal tumors, the availability of high-quality randomized controlled trials is limited, which highlights the necessity for further research.

8.
Int J Biol Macromol ; 266(Pt 1): 131106, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38552685

RESUMO

The process of diabetic wound healing was influenced by the excessive proliferation of reactive oxygen species (ROS). Therefore, in the process of healing diabetic wounds, it was crucial to removing ROS. This study designed composited nanoparticles: KBP, consisted by Konjac glucomannan, bovine serum albumin, and Prussian blue. Then they were embedded in Konjac glucomannan and hydroxypropyl trimethylammonium chloride chitosan composite hydrogel (KH), The KBP@KH hydrogel finally achieved excellent efficacy in diabetic wound healing. The in vitro and in vivo experiments demonstrated that KPB nanoparticles exhibited favorable ROS scavenging capability and biosafety. The KBP@KH hydrogel not only effectively eliminated ROS from diabetic wounds, but also exhibited excellent wound adaptability. The KBP@KH hydrogel facilitated angiogenesis and suppressed the production of inflammatory factors. Overall, the KBP@KH hydrogel dressing was characterized by its user-friendly nature, safety, and high efficiency.

9.
Sci Total Environ ; 926: 171885, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38527540

RESUMO

Organic contaminants, notorious for their complexity and resistance to degradation, are prevalent in aquatic environments, posing severe threats to ecosystems. Sulfate radical-based advanced oxidation processes (SR-AOPs), known for their stability and high effectiveness, have become a common choice for treating organic wastewater. Metal-organic framework materials (MOFs) have garnered substantial attention due to their facile chemical manipulation, unique structural configurations, and other favorable properties. Therefore, this article critically reviews recent advances in research involving the utilization of Fe-based MOFs (Fe-MOFs) and their derivatives in SR-AOPs. Specifically, it highlights the manipulation of influencing factors within the system to enhance the degradation of organic pollutants. The mechanisms and applications underlying the degradation of organic pollutants in the SR-AOPs system are also elucidated.

10.
Plant Physiol Biochem ; 209: 108530, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38520966

RESUMO

Marine microalgae are an essential component of marine plankton and critical primary producers, playing a vital role in marine ecosystems. The seawater carbonate system is a dynamic equilibrium system, and changes in any component can alter the carbonate balance. In CO2-concentrating mechanisms (CCMs), carbonic anhydrase (CA) regulates CO2 concentration by catalyzing the interconversion between CO2 and HCO3-. Therefore, limiting the activity of extracellular carbonic anhydrase (exCA) alters the rate at which carbonate equilibrium is reached and further affects the carbon assimilation process in microalgae. In this study, two different microalgae, Phaeodactylum tricornutum and Nannochloropsis oceanica, were selected to investigate the effects of changes in the carbonate system on photosynthetic carbon assimilation in microalgae by inhibiting exCA activity with acetazolamide (AZ). Inhibition of exCA activity reduces specific growth rates and photosynthetic efficiency of microalgae. The total alkalinity, HCO3- concentration, and CO2 concentration of the cultures increased with the decrease of pH, but the changes of the ribulose 1,5- bisphosphate carboxylase/oxygenase (Rubisco) activities of the two microalgae were different. In addition, the two microalgae possessed different lipid and carbohydrate synthesis strategies, but both restricted triacylglycerol (TAG) synthesis. Meanwhile, the microalgal cells had to utilize more 13CO2 when HCO3- and CO2 conversion rates were limited and restricted. This led to the continuous accumulation of 13C in fatty acids and the elevation of δ13CFAs. In conclusion, our study provides a new perspective on the role of microalgae in correlating carbonate changes with photosynthetic carbon assimilation strategies under mechanistic constraints on inorganic carbon utilization.


Assuntos
Anidrases Carbônicas , Microalgas , Carbono , Isótopos de Carbono , Dióxido de Carbono , Ecossistema , Anidrases Carbônicas/metabolismo , Carbonatos , Fotossíntese/fisiologia
11.
PLoS One ; 19(3): e0300931, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38512874

RESUMO

A uniaxial compression test was conducted on sandstone specimens at various inclination angles to determine the energy evolution characteristics during deformation and damage. Based on the principle of minimum energy dissipation, an intrinsic model incorporating the damage threshold was developed to investigate the mechanical properties of sandstone at different inclination angles, and the energy damage evolution during deformation and damage. This study indicated that when the inclination angle of the structural surface remained below 40°, sandstone exhibited varying mechanical properties based on different inclination angles. The peak strain was positively correlated with the inclination angle, whereas the compressive strength and modulus of elasticity showed negative correlations. From an energy perspective, the deformation and damage of sandstone under external loading entail processes of energy input, accumulation, and dissipation. Moreover, higher inclination angles of the structural surface resulted in a smaller absorbed peak strain and a reduced proportion of dissipated energy relative to the energy input, thereby affecting the evolution of energy damage throughout the process. As the inclination angle of the structural surface increased, the absorbed total strain at the peak value decreased, whereas the proportion of the dissipated energy increased. Additionally, the damage threshold and critical value of the rock specimens increased with the inclination angle. The critical value, a composite index comprising the peak strain, compressive strength, and elastic modulus, also increased accordingly. These findings can offer a novel perspective for analyzing geological disasters triggered by fissure zones within underground rock formations.


Assuntos
Desastres , Salicilatos , Força Compressiva , Módulo de Elasticidade , Elasticidade
12.
Heliyon ; 10(5): e27073, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38463856

RESUMO

Purpose: To identify essential oils (EOs) active against non-growing stationary phase Mycobacterium abscessus and multidrug-resistant M. abscessus strains. Methods: The activity of EOs against both stationary and log phase M. abscessus was evaluated by colony forming unit (CFU) assay and minimum inhibitory concentration (MIC) testing. Results: We assessed the activity of 80 EOs against stationary phase M. abscessus and found 12 EOs (Cinnamon, Satureja montana, Palmarosa, Lemon eucalyptus, Honey myrtle, Combava, Health shield, Mandarin, Thyme, Rosewood, Valerian Root and Basil) at 0.5% concentration to be active against both growing and non-growing stationary phase M. abscessus. Among them, Satureja montana essential oil and Palmarosa essential oil could eliminate all stationary phase M. abscessus at 0.125% and Cinnamon essential oil could eliminate stationary phase bacteria at 0.063% after 1-day treatment. Interestingly, these EOs also exhibited promising activity against multidrug-resistant M. abscessus clinical strains. Conclusions: Our study indicates that some EOs display outstanding effectiveness against both drug susceptible M. abscessus and multidrug-resistant M. abscessus isolates. These findings may be significant for the treatment of persistent M. abscessus infections.

13.
Chin Med ; 19(1): 48, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38500179

RESUMO

BACKGROUND: HBV infection can result in severe liver diseases and is one of the primary causes of liver cell carcinoma-related mortality. Liuwei Wuling tablet (LWWL) is a traditional Chinese medicine formula, with a protecting liver and decreasing enzyme activity, usually used to treat chronic hepatitis B with NAs in clinic. However, its main active ingredients and mechanism of action have not been fully investigated. Hence, we aimed to screen the active ingredient and effective ingredient combinations from Liuwei Wuling tablet to explore the anti-herpatitis B virus activity and mechanism. METHODS: Analysis and screening of effective antiviral components in LWWL by network pharmacology, luteolin (Lut) may be a compound with significant antiviral activity. The mechanism of antiviral action of Lut was also found by real-time PCR detection and western blotting. Meanwhile, we established a co-culture model to investigate the antiviral mechanism of Schisandrin C (SC), one of the main active components of Schisandra chinensis fructus (the sovereign drug of LWWL). Next, HBV-infected mice were established by tail vein injection of pAAV-HBV1.2 plasmid and administered continuously for 20 days. And their antiviral capacity was evaluated by checking serum levels of HBsAg, HBeAg, levels of HBV DNA, and liver levels of HBcAg. RESULTS: In this study, we conducted network pharmacology analysis on LWWL, and through in vitro experimental validation and data analysis, we found that luteolin (Lut) possessed obviously anti-HBV activity, inhibiting HBV replication by downregulating hepatocyte nuclear factor 4α (HNF4α) via the ERK pathway. Additionally, we established a co-culture system and proved that SC promoted activation of cGAS-STINIG pathway and IFN-ß production in THP-1 cells to inhibit HBV replication in HepG2.2.15 cells. Moreover, we found the combination of SC and Lut shows a greater effect in inhibiting HBV compared to SC or Lut alone in HBV-infected mice. CONCLUSION: Taken together, our study suggests that combination of SC and Lut may be potential candidate drug for the prevention and treatment of chronic hepatitis B.

14.
Clin Oral Investig ; 28(3): 188, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38430316

RESUMO

OBJECTIVES: Root-end filling is important for the clinical outcome of endodontic microsurgery. Our previous study showed that combined application of iRoot BP Plus Root Repair Material (BP-RRM) and iRoot SP Injectable Root Canal Sealer (SP-RCS) in root-end filling exhibited better apical sealing as compared to the application of BP-RRM alone. The aim of this randomized controlled clinical trial was to evaluate the effect of the combined use of BP-RRM and SP-RCS on the prognosis of teeth with refractory periapical diseases after endodontic microsurgery. MATERIALS AND METHODS: 240 teeth with refractory periapical diseases scheduled for endodontic microsurgery were randomly divided into BP-RRM/SP-RCS group (n = 120) and BP-RRM group (n = 120). The patients were followed up at 3 months, 6 months, and 12 months after endodontic microsurgery. Pre- and post-operative clinical and radiographic examinations were performed to evaluate the treatment outcome. The 1-year success rate of endodontic microsurgery in BP-RRM/SP-RCS and BP-RRM groups was compared by Chi-square test. Factors that might impact the prognosis were further analyzed using Chi-square test or Fisher's exact test. RESULTS: A total of 221 teeth completed the 12-month follow-up. The 1-year success rates of the BP-RRM/SP-RCS and BP-RRM groups were 94.5% (104/110) and 92.8% (103/111), respectively. The combined use of BP-RRM and SP-RCS achieved a clinical outcome comparable to BP-RRM alone (P = 0.784). Tooth type (P = 0.002), through-and-through/apico-marginal lesion (P = 0.049), periodontal status (P < 0.0001), and Kim's lesion classification (P < 0.0001) were critical factors associated with the 1-year success of endodontic microsurgery. CONCLUSIONS: The combined use of BP-RRM and SP-RCS is a practicable method for root-end filling in endodontic microsurgery with a satisfactory 1-year clinical outcome. CLINICAL RELEVANCE: The combined application of BP-RRM and SP-RCS in EMS is an effective root-end filling method with a satisfactory 1-year clinical outcome. TRIAL REGISTRATION: This study was registered in the Chinese Clinical Trial Registry (ChiCTR2100052174).


Assuntos
Doenças Periapicais , Materiais Restauradores do Canal Radicular , Humanos , Compostos de Cálcio/uso terapêutico , Microcirurgia/métodos , Materiais Restauradores do Canal Radicular/uso terapêutico , Silicatos/uso terapêutico
15.
Front Microbiol ; 15: 1355028, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38435699

RESUMO

This study investigated the spatiotemporal distribution of the phytoplankton in the coral habitat of Dongshan Bay (China), along with critical factors affecting the distribution, during June, August, and December 2022. Phytoplankton abundance in Dongshan Bay exhibited considerably temporal variation, peaking in June 2022, gradually decreasing thereafter, and reaching its lowest point in December 2022. The abundance of bottom-layer phytoplankton consistently exceeded that of the surface layer throughout all seasons. The average phytoplankton abundance in the coral habitat of Dongshan Bay was lower than that in non-coral habitat areas. Fluctuations in the Zhangjiang River and coastal upwelling influenced the diversity and community structure of the phytoplankton. Critical factors causing spatiotemporal variability in phytoplankton community structure included nutrient concentrations and seawater temperature. Nutrients played key roles in influencing various phytoplankton groups. Dominant diatom species, such as Thalassionema nitzschioides and Thalassiosira diporocyclus, were positively correlated with ammonia nitrogen, seawater salinity, coral cover, and the number of coral species present. In winter, Calanus sinicus exhibited a negative correlation with harmful algal bloom species. Additionally, it was found that both in the coral habitat and surrounding open sea, currents, nutrients, and zooplankton may play crucial roles in determining the spatiotemporal variability in the phytoplankton community structure.

16.
Molecules ; 29(4)2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38398602

RESUMO

The use of gaseous CO in Pd-catalyzed carbonylative quinolone synthesis presents challenges related to safety and precise pressure control. In response, a streamlined non-gaseous synthesis of 4-quinolone compounds has been developed. This study introduces a tunable CO-releasing system utilizing Fe(CO)5 activated by a dual-base system of piperazine and triethylamine. This alternative liquid CO resource facilitates the palladium-catalyzed carbonylative C-C coupling and subsequent intramolecular cyclization. By tuning the tandem kinetics of carbonylation and cyclization, this non-gaseous method achieves the successful synthesis of 22 distinct 4-quinolones with excellent yields. This is achieved through the three-component condensation of sub-stoichiometric amounts of Fe(CO)5 with 2-iodoaniline and terminal alkynes. Operando mechanistic studies have revealed a novel CO transfer mechanism that facilitates homogeneous carbonylative cyclization, distinguishing this method from traditional techniques. In addition to addressing safety concerns, this approach also provides precise control over selectivity, with significant implications for pharmaceutical research and the efficient synthesis of pharmaceutical and bioactive compounds.

17.
mSphere ; 9(3): e0073123, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38412041

RESUMO

Members of Providencia, although typically opportunistic, can cause severe infections in immunocompromised hosts. Recent advances in genome sequencing provide an opportunity for more precise study of this genus. In this study, we first identified and characterized a novel species named Providencia zhijiangensis sp. nov. It has ≤88.23% average nucleotide identity (ANI) and ≤31.8% in silico DNA-DNA hybridization (dDDH) values with all known Providencia species, which fall significantly below the species-defining thresholds. Interestingly, we found that Providencia stuartii and Providencia thailandensis actually fall under the same species, evidenced by an ANI of 98.59% and a dDDH value of 90.4%. By fusing ANI with phylogeny, we have reclassified 545 genomes within this genus into 20 species, including seven unnamed taxa (provisionally titled Taxon 1-7), which can be further subdivided into 23 lineages. Pangenomic analysis identified 1,550 genus-core genes in Providencia, with coenzymes being the predominant category at 10.56%, suggesting significant intermediate metabolism activity. Resistance analysis revealed that most lineages of the genus (82.61%, 19/23) carry a high number of antibiotic-resistance genes (ARGs) and display diverse resistance profiles. Notably, the majority of ARGs are located on plasmids, underscoring the significant role of plasmids in the resistance evolution within this genus. Three species or lineages (P. stuartii, Taxon 3, and Providencia hangzhouensis L12) that possess the highest number of carbapenem-resistance genes suggest their potential influence on clinical treatment. These findings underscore the need for continued surveillance and study of this genus, particularly due to their role in harboring antibiotic-resistance genes. IMPORTANCE: The Providencia genus, known to harbor opportunistic pathogens, has been a subject of interest due to its potential to cause severe infections, particularly in vulnerable individuals. Our research offers groundbreaking insights into this genus, unveiling a novel species, Providencia zhijiangensis sp. nov., and highlighting the need for a re-evaluation of existing classifications. Our comprehensive genomic assessment offers a detailed classification of 545 genomes into distinct species and lineages, revealing the rich biodiversity and intricate species diversity within the genus. The substantial presence of antibiotic-resistance genes in the Providencia genus underscores potential challenges for public health and clinical treatments. Our study highlights the pressing need for increased surveillance and research, enriching our understanding of antibiotic resistance in this realm.


Assuntos
Antibacterianos , Providencia , Humanos , Providencia/genética , Plasmídeos , Antibacterianos/farmacologia , Genômica , DNA
18.
Org Biomol Chem ; 22(12): 2443-2450, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38416045

RESUMO

Medium-sized lactones are important structural units, but their synthesis remains a great challenge. Herein, we report I2/CF3CO2Ag-mediated iodolactonization of allenoic acids to synthesize various 6- to 9-membered ring vinylic iodolactones in 16-89% yield. This protocol not only develops a new cyclization strategy of allenoic acids, but also provides highly functionalized medium-sized lactones containing alkene and halogen groups.

19.
Animals (Basel) ; 14(4)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38396545

RESUMO

CircRNA, a recently characterized non-coding RNA (ncRNA) variant, functions as a molecular sponge, exerting regulatory control by binding to microRNA (miRNA) and modulating the expression of downstream proteins, either promoting or inhibiting their expression. Among poultry species, geese hold significant importance, prized by consumers for their delectable taste and rich nutritional content. Despite the prominence of geese, research on the growth and development of goose muscle, particularly the regulatory role of circRNAs in goose muscle formation, remains insufficiently explored. In this study, we constructed comprehensive expression profiles of circRNAs and messenger RNAs (mRNAs) within the myoblasts and myotubes of Shitou geese. We identified a total of 96 differentially expressed circRNAs (DEcircRNAs) and 880 differentially expressed mRNAs (DEmRNAs). Notably, the parental genes of DEcircRNAs and DEmRNAs exhibited enrichment in the Wnt signaling pathway, highlighting its potential impact on the proliferation and differentiation of goose myoblasts. Employing RNAhybrid and miRDB, we identified circRNA-miRNA pairs and mRNA-miRNA pairs that may play a role in regulating myogenic differentiation or muscle growth. Subsequently, utilizing Cytoscape, we constructed a circRNA-miRNA-mRNA interaction network aimed at unraveling the intricate regulatory mechanisms involved in goose muscle growth and development, which comprises 93 circRNAs, 351 miRNAs, and 305 mRNAs. Moreover, the identification of 10 hub genes (ACTB, ACTN1, BDNF, PDGFRA, MYL1, EFNA5, MYSM1, THBS1, ITGA8, and ELN) potentially linked to myogenesis, along with the exploration of their circRNA-miRNA-hub gene regulatory axis, was also conducted. These competitive endogenous RNA (ceRNA) regulatory networks elucidate the molecular regulatory mechanisms associated with muscle growth in Shitou geese, providing deeper insights into the reciprocal regulation of circRNA, miRNA, and mRNA in the context of goose muscle formation.

20.
Viruses ; 16(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38400007

RESUMO

In the realm of clinical practice, nucleoside analogs are the prevailing antiviral drugs employed to combat feline herpesvirus-1 (FHV-1) infections. However, these drugs, initially formulated for herpes simplex virus (HSV) infections, operate through a singular mechanism and are susceptible to the emergence of drug resistance. These challenges underscore the imperative to innovate and develop alternative antiviral medications featuring unique mechanisms of action, such as viral entry inhibitors. This research endeavors to address this pressing need. Utilizing Bio-layer interferometry (BLI), we meticulously screened drugs to identify natural compounds exhibiting high binding affinity for the herpesvirus functional protein envelope glycoprotein B (gB). The selected drugs underwent a rigorous assessment to gauge their antiviral activity against feline herpesvirus-1 (FHV-1) and to elucidate their mode of action. Our findings unequivocally demonstrated that Saikosaponin B2, Punicalin, and Punicalagin displayed robust antiviral efficacy against FHV-1 at concentrations devoid of cytotoxicity. Specifically, these compounds, Saikosaponin B2, Punicalin, and Punicalagin, are effective in exerting their antiviral effects in the early stages of viral infection without compromising the integrity of the viral particle. Considering the potency and efficacy exhibited by Saikosaponin B2, Punicalin, and Punicalagin in impeding the early entry of FHV-1, it is foreseeable that their chemical structures will be further explored and developed as promising antiviral agents against FHV-1 infection.


Assuntos
Infecções por Herpesviridae , Taninos Hidrolisáveis , Ácido Oleanólico/análogos & derivados , Saponinas , Varicellovirus , Animais , Gatos , Humanos , Antivirais/farmacologia , Antivirais/uso terapêutico , Infecções por Herpesviridae/veterinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...